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Abstract
Fuzzing is a process where random, almost valid, input
streams are automatically generated and fed into com-
puter systems in order to test the robustness of user-
exposed interfaces. We fuzz the Linux kernel system call
interface; unlike previous work that attempts to generi-
cally fuzz all of an operating system’s system calls, we
explore the effectiveness of using specific domain knowl-
edge and focus on finding bugs and security issues re-
lated to a single Linux system call.

The perf event open() system call was introduced in
2009 and has grown to be a complex interface with over
40 arguments that interact in subtle ways. By using de-
tailed knowledge of typical perf event usage patterns we
develop a custom tool, perf fuzzer, that has found bugs
that more generic, system-wide, fuzzers have missed.
Numerous crashing bugs have been found, including a
local root exploit. Fixes for these bugs have been merged
into the main Linux source tree.

Testing continues to find new bugs, although they are
increasingly hard to isolate, requiring development of
new isolation techniques and helper utilities. We de-
scribe the development of perf fuzzer, examine the bugs
found, and discuss ways that this work can be extended
to find more bugs and cover other system calls.

1 Introduction

Fuzzing is an automated method of finding bugs and se-
curity issues in computer systems. A fuzzer stresses var-
ious aspects of computer systems by methodically gener-
ating inputs designed to trigger boundary conditions that
may not have been well tested. Nearly-correct inputs
are generated and fed into the software to see if errors
are handled correctly; if not the program may crash, or
worse, lead to exploitable security issues.

Fuzzing can be done to any level of the computing
stack, from high-level user programs [17] down to the

underlying hardware implementation [29].

Fuzzing has a long history and is considered by some
to be a solved issue. We investigate whether this is true
by fuzzing the highly visible and often-fuzzed Linux
kernel codebase (many fuzzers target Linux, with Trin-
ity [11] being the most widely used example). We find
that by using domain knowledge of a specific complex
system call we can quickly uncover a large number of
security issues.

The perf event open() system call [27] is the pri-
mary entry point into the Linux kernel’s perf event per-
formance monitoring subsystem. Introduced in 2009,
the perf event interface allows creating a file descrip-
tor that is linked to various types of system performance
measurements: software events maintained by the kernel
(page faults, context-switches), hardware events main-
tained by low-level hardware counters in the CPU (cache
misses, instruction counts), and other performance infor-
mation that fits the interface (more recently, RAPL en-
ergy measurements on Intel CPUs [3]).

The perf event open() call has grown to be a com-
plex interface with over 40 arguments that interact in
subtle ways. Various other system calls interact with
perf event file descriptors, providing a large surface for
potential errors.

We write a syscall-specific fuzzer, perf fuzzer, that au-
tomatically tests this interface. To date at least seventeen
major bugs have been found and fixed; most are denial of
service (DoS) bugs that can crash a system, but at least
one is a local root exploit. Fixes for all of these bugs
have been contributed back upstream to the main Linux
kernel source tree. Testing continues to find new bugs,
although they are becoming more obscure and harder to
isolate and fix.

We describe the development of the perf fuzzer tool,
examine the bugs found, and describe work that will
make the tool more effective in the future.



2 Related Work

The use of random inputs when testing computer sys-
tems has a long history, although at times it has been
considered less effective than more formal testing meth-
ods [19]. Duran and Ntafos [6] in 1984 countered this by
describing the merits of using random input testing.

The term “fuzzing” was first coined by Miller in 1988
as part of a class project determining why line noise over
a “fuzzy” modem connection would crash many UNIX
utilities. This research was extended by Miller et al. [17]
to investigate the causes of the crashes on a wide range
of UNIX systems. While they focus on userspace utili-
ties rather than kernel interfaces, many of the bugs they
find (including NULL pointer dereferences and lack of
bounds checking on arrays) are the same as those found
by us with perf fuzzer 25 years later.

Miller et al. revisited tool fuzzing in 1995 [18] and
found that they could still crash over 40% of common
system utilities on UNIX and Linux systems. Forrester
and Miller extended the work to look at Windows NT [9]
and Miller, Cooksey and Moore looked at Mac OSX [16]
userspace programs and found similar userspace error
rates to those on UNIX. Most of these investigations look
at userspace utilities; our work concentrates on operating
system kernel interfaces.

Operating systems have many potential interfaces
exposed to users that can harbor bugs. Carrette’s
CrashMe [2] program attempts to crash the operating
system by fuzzing the instruction stream. Unlike our
work, this does not target system calls directly, but the
entire operating system and underlying hardware in the
face of random processor instructions. Medonça and
Neves [15] fuzz at the device driver level by externally
sending malicious inputs to wireless networking hard-
ware. Cadar et al. [1] use an analysis tool that exam-
ines executables and generates inputs based on program
flow; they apply this to finding crashing bugs in the Linux
filesystem code with malicious filesystem images. An-
other interface open for bugs in modern systems is the
virtual machine interface [10, 14].

Koopman et al. [13] look at the robustness of five dif-
ferent operating systems (Mach, HP-UX, QNX, LynxOS
and Stratus FTX) by injecting random data at the operat-
ing system interface, focusing on seven commonly used
system calls: read(), write(), open(), close(),
fstat(), stat(), and select(). On four of the five
systems bugs severe enough to require a restart were
found. Our work is similar to this, but involves focusing
on a single system call on the Linux operating system.

Existing Linux system call fuzzers such as Jones’
Trinity [11] and Ormandy’s iknowthis [21] test the ma-
jority of available system calls with varied parameters.
They currently do not focus on one system call, and only

have limited support for using system call dependency
information to chain together related system calls the
way that perf fuzzer can. perf fuzzer shares some code
with Trinity; this will be described in more detail in Sec-
tion 4.2.

Oehlert [20] describes fuzzing a Windows terminal
program and provides some useful definitions. He notes
that the most critical bugs found with fuzzers are those
that cross a trust boundary (user to kernel or network to
local). He differentiates between two techniques for cre-
ating inputs: data generation and data mutation. The
former is when inputs are randomly chosen based on a
specification while the latter takes known working inputs
and modifies them slightly. A related distinction is intel-
ligent and unintelligent fuzzers: the former knows what
valid input looks like and attempts to mimic it, the latter
just generates inputs randomly. By these definitions, our
perf fuzzer does data generation while attempting to be
an intelligent fuzzer.

3 Motivation

Despite the best efforts of the maintainers, bugs are
continually found in operating systems such as Linux.
This work concentrates on finding bugs in the Linux
perf event performance monitoring subsystem which
was introduced in the 2.6.31 kernel in 2009. The
perf event interface is more complex than the compet-
ing interfaces it replaced, and it has only grown more
complicated as it has accumulated features since its in-
troduction.

The perf event interface was chosen as the target of
domain-specific fuzzing due to our ongoing frustration
with finding bugs in the interface and hoping to automate
the process (rather than building a reactionary bug test
suite such as perf event test [28]). We help develop
the PAPI [25] performance library which is widely used
by the high-performance computing community. PAPI
tends to exercise a different subset of functionality than
the more commonly used perf command-line utility dis-
tributed with the Linux kernel source. Since most kernel
developers restrict their perf event usage to perf, any
functionality not exercised by that tool can break with-
out being noticed. Work on PAPI and turned up numer-
ous kernel bugs, as seen in Table 1. These issues were all
found by programs trying to exercise normal, expected
functionality of the interface. This hinted that even more
bugs would be exposed by more methodical testing (such
as fuzzing) and indeed that is what we find.

The Trinity fuzzer (described in more detail in Sec-
tion 4.2) added support for perf event open() soon
after the system call was introduced. Trinity initially had
limited support for the call, making it extremely unlikely
that valid or near-valid events would be generated. We
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Table 1: Linux kernel perf event security bugs from 2009-2013 found without fuzzers.
Type CVE Fixed (version/git commit) Description

root exploit CVE-2009-3234 2.6.32 b3e62e35058fc744 buffer overflow
crash CVE-2010-4169 2.6.37 63bfd7384b119409 improper mmap hook
crash - 2.6.39 ab711fe08297de14 task context scheduling

memleak - 2.6.39 38b435b16c36b0d8 inherited events leak memory
crash CVE-2011-2521 2.6.39 fc66c5210ec2539e x86 msr registers wrong
DoS CVE-2011-4611 2.6.39 0837e3242c73566f ppc cause unexpected interrupt
crash CVE-2011-2918 3.1 a8b0ca17b80e92fa software event overflow
crash - 3.5 9c5da09d266ca9b3 cgroup reference counting
crash CVE-2013-2146 3.9 f1923820c447e986 offcore mask allows writing reserved bit
crash - 3.9 1d9d8639c063caf6 pebs/bts state after suspend/resume

contributed slightly better support in November 2011 as
an ongoing part of research into the interface. Not much
came of this until April 2013 when Rantala [23] found a
bug using Trinity where the 64-bit attr.config value
was being copied to a 32-bit integer before being san-
ity checked. This bug meant that the high 32-bits could
be controlled by the user, and eventually it was discov-
ered that this could be exploited by a local user to get
root privileges (CVE-2013-2094). More worrisome, the
kernel code change that introduced this bug happened in
2010 and was possibly being exploited soon after, but it
took 3 years for the bug to be found and fixed.

The publicity surrounding this security breach re-
newed our interest in perf event fuzzing. We sent en-
hanced patches to Trinity to bring it in line with modern
kernels, but also started development of the perf fuzzer
in May 2013 to go above and beyond the coverage of-
fered by Trinity.

4 Background and Implementation

4.1 The perf event Interface

The perf event performance monitoring subsystem has a
complex interface that is not completely exercised by a
naı̈ve fuzzer. A full description of the interface can be
found in the perf event open.2 manpage [27]. The
perf event open() interface is complex enough that it
has the longest manual page of any system call, longer
even than the elaborate ptrace() system call.

The prototype for the system call looks like this:
int perf_event_open(struct perf_event_attr *attr ,

pid_t pid , int cpu , int group_fd ,
unsigned long flags);

It takes five input arguments:

• attr is a complicated structure describing the event
to be created with 40 inter-related fields (see Fig-
ure 1),

struct perf_event_attr {
__u32 type; /* Type of event */
__u32 size; /* Size of structure */
__u64 config; /* Type -specific config */
union {
__u64 sample_period; /* Sample period */
__u64 sample_freq; /* Sample frequency */
};
__u64 sample_type; /* Values in sample */
__u64 read_format; /* Values in read */
__u64 disabled : 1, /* off by default */

inherit : 1, /* children inherit */
pinned : 1, /* always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* no user */
exclude_kernel : 1, /* no kernel */
exclude_hv : 1, /* no hypervisor */
exclude_idle : 1, /* no idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* freq , not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non -exec mmap data */
sample_id_all : 1, /* sample_type all */
exclude_host : 1, /* no count in host */
exclude_guest : 1, /* no count in guest */
exclude_callchain_kernel : 1,
exclude_callchain_user : 1,
__reserved_1 : 41;

union {
__u32 wakeup_events; /* wake every n events */
__u32 wakeup_watermark; /* bytes before wakeup */
};
__u32 bp_type; /* breakpoint type */
union {
__u64 bp_addr; /* breakpoint address */
__u64 config1; /* extension of config */
};
union {
__u64 bp_len; /* breakpoint length */
__u64 config2; /* extension of config1 */
};
__u64 branch_sample_type; /* enum */
__u64 sample_regs_user; /* user regs to dump */
__u32 sample_stack_user; /* stack size to dump */
__u32 __reserved_2; /* Align to u64 */

};

Figure 1: perf event open() struct perf event attr
definition.
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• pid specifies which process id to monitor (0 indi-
cating current, -1 indicating all),

• cpu specifies which CPU core to monitor (-1 indi-
cating all),

• group fd allows an event to join a group leader,
creating a group of events that can be read simulta-
neously,

• and flags allows setting various optional event
flags.

There are two common ways of using perf event: one
is monitoring any program belonging to a user (anyone
can do this by default), the other is system-wide mea-
surement (which generally requires root permissions to
avoid leaking sensitive information between users).

Opening an event with perf event open() is only a
small part of the perf event experience. Many bugs that
are found do not happen solely at open, but also depend
on interactions with other calls. Various other kernel in-
terfaces interact with perf event:

• prctl() (process control) can be used to start and
stop all events in a process,

• ioctl() is used to start, stop, and otherwise get
information about events,

• read() returns the current values of counters and
some additional information,

• mmap() can map pages that provide event info as
well as a circular ring buffer where the kernel places
sampled event information,

• poll() can wait for overflow or buffer-full signals,

• and, various files under /proc and /sys provide
extra event information and configuration settings.

The perf event implementation involves low-level
code scattered throughout the kernel, making the inter-
face complex to debug. Hardware events are generally
programmed by writing to CPU model specific registers
(MSRs on x86). Hardware events can overflow, trig-
gering non-maskable (NMI) interrupts. Software events
(counts of kernel maintained values such as context-
switches and interrupt counts) require placing perf event
code in time critical kernel functions. The perf event in-
terface has also grown to include the hardware break-
point interface and has major connections to the ftrace
system tracing interface. In addition support has been
added to support running Berkeley Packet Filter (BPF)
programs in the kernel in conjunction with events, fur-
ther increasing the potential sources of bugs.

4.2 The Trinity Fuzzer
Jones introduced the Trinity fuzzer [11, 12], first as
scrashme in 2006, and then renamed Trinity in 2010.
The tool is designed to methodically check all of the
Linux system calls looking for bugs that affect the ker-
nel. Trinity excels at creating “interesting” inputs: rather
than always passing purely random values into the ker-
nel, it picks values that are valid, close to valid, or known
boundary or corner cases. For string cases it generates
not only normal ASCII strings but pathological cases
with lots of nulls or weird Unicode values. It also cre-
ates resources commonly used as inputs to syscalls, such
as pre-initialized file descriptors and chunks of allocated
memory.

The following annotations can be provided for system
call inputs:

• ARG RANDOM LONG – random long integer,
with special code to mix in “interesting” values,

• ARG FD – random pre-defined file descriptor from
a list containing various interesting files in /dev,
/proc, /sys, perf event, pipes, network sockets,
etc.,

• ARG LEN – random size of a variable,

• ARG ADDRESS / ARG NON NULL ADDRESS
– random memory address,

• ARG MODE T – random access mode,

• ARG PID – random process ID,

• ARG RANGE – random value from a provided
range,

• ARG LIST / ARG OP – random bit masks com-
posed by or-ing values from a provided list,

• ARG RANDPAGE – a page full of random values,

• ARG CPU – random cpu,

• ARG PATHNAME – random path name,

• ARG IOVEC / ARG IOVECLEN – random iovec,

• ARG SOCKADDR / ARG SOCKADDR LEN –
random socket,

• or, ARG MMAP – random mmap() mapping.

An additional sanitise routine can be provided which
cleans up the randomly selected parameters to make
them more likely to be valid.

When started, Trinity initializes various structures,
such as randomized memory pages and file descriptor
tables. A number of children are created which do the
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actual fuzzing. A watchdog process is also created that
makes sure the children are making forward progress
and restarts them if they die. The children record their
progress to a log file, syncing to avoid losing informa-
tion in a crash. Ideally the fuzzer can run forever without
incident, but usually at some point some sort of kernel
message, panic, or crash will happen which then needs
to be identified and reported.

4.3 The perf fuzzer

Trinity does a remarkable job of finding bugs, but it cur-
rently runs system calls mostly independently. An inter-
face like perf event often has bugs that involve various
system calls interacting in a complex set of ways that
are hard to describe with the current Trinity infrastruc-
ture. Figure 2 shows at a high level how a generic syscall
fuzzer differs from a targeted fuzzer such as perf fuzzer.

4.3.1 Implementation

The perf fuzzer re-uses the
syscalls/perf event open.c fuzzing routines
provided by Trinity. Sharing code between the two
projects avoids duplicated work and ensures that any im-
provements in one project are included in the other. The
perf fuzzer does not directly use any Trinity interfaces
besides the syscall perf event open.sanitise()

call that initializes and sets up the arguments for the
system call.

At startup the perf fuzzer parses the command line.
It seeds the random number generator, either based on
the time, or else via a value passed by the user (to
enable re-running with same initial start conditions).
This value is also printed and written to disk to ease
reproduction of a run. The process id is logged so
that during replay any invocations using the previous
process id are re-mapped to the current one. Various
structures are initialized, including calling the Trinity
syscall perf event open.init() routine and cre-
ation of a Trinity-compatible “page rand”.

Next the signal handlers are initialized. These can be
a source of errors as the more widely used perf utility
does not use signal handlers (it uses poll() to detect
overflows). The perf fuzzer sets up counter overflows to
trigger SIGRT signals (as PAPI does) because they queue
and avoid losing signals when a system is busy. Eventu-
ally the queues can fill and the kernel handles this by
sending SIGIO; we set up handlers for both SIGRT and
SIGIO. The SIGRT handler disables the event causing
the signal, reads event values and then restarts the event.
If the SIGIO handler is triggered it means we are stuck in
a tight overflow storm and not making forward progress,
so it attempts to close the event causing the issues (this

is difficult, especially if the event was created in another
thread before forking). An additional SIGQUIT handler
is set up that will dump the current open event state so a
user can monitor the current status of the fuzzing.

The main perf fuzzer event loop is then entered, which
loops forever randomly selecting one of the following
tasks. These tasks have been arbitrarily chosen based
on knowledge of the interface and the tools that typically
use it.

• Open a Random Event
Repeatedly run perf event open() with random
parameters until it successfully creates an event. It
reuses the Trinity syscall sanitise code, which:

1. clears the fields,

2. randomly sets cpu to -1 (any) or else a valid
CPU,

3. sets group leader to -1 (I’m a leader) or a ran-
dom other fd,

4. sets flags to one of four valid values or else
completely random,

5. sets pid to either the current pid, 0 (which
means current), -1 (all), or a random pid,

6. then it sets up the attr structure to one of
3 choices: a mostly valid counting event, a
mostly valid sampling event, or a completely
random event.

The following are the possible attr.type field set-
tings; perf fuzzer tries to exercise them all. It also
chooses appropriate random config, config1 and
config2 values appropriate for the type selected:

– HARDWARE – the kernel defines various pre-
defined “generic” events

– HW CACHE – these are also pre-defined
events but with a more complex encoding

– RAW – these are the raw values passed
directly to the underlying CPU and vary
based on architecture and processor model.
perf fuzzer does not currently make intelligent
picks here

– SOFTWARE – the kernel defines various
events

– BREAKPOINT – hardware breakpoints, we
try to pick mostly valid size and address fields
as well as read, write, or execute settings

– TRACEPOINT – possible values can be read
from debugfs (but it is rare that this is
mounted); the values are usually small so we
preferentially choose a low random integer

5



tested by

10 targeted

perf_event

related

operations

Repeatedly 

Repeat until

valid (<0.3%) perf_event_open

called

perf_event specific

tuneups (mmap, etc.)

closed, after enduring

targeted fuzzing

file descriptor
operated on

perf_event_open

called

file descriptor
operated on

Valid event only 

created <0.3% of time

perf_event_open() chosen

randomly from full list of syscalls

perf_event_open() specially

targeted

operated on 

Occasionally

by random

syscall

closed after enduring

light, random fuzzing

Generic Fuzzers perf_fuzzer

Figure 2: Comparison of a generic syscall fuzzer (such as Trinity) with a targeted fuzzer (such as perf fuzzer).

– SYSFS – some common generic events
are exported via the sysfs filesys-
tem in a complex series of files under
/sys/bus/event source/devices/. At
startup these values are parsed and randomly
selected

– RANDOM – other performance measurement
units (PMUs) can be available; they are dy-
namically assigned values above the last pre-
defined kernel type.

In addition there are a few other fields that need to
be set for a valid event. There is attr.size which is
used for versioning and backward compatibility and
it needs to be one of a few possible values. There are
also various boolean flags that are chosen randomly.
Once an event is opened, the fuzzer randomly de-
cides whether to enable an associated mmap() ring
buffer page or overflow signal handler.

Despite the fuzzer’s advanced event creation knowl-
edge, a large percentage of events (usually more
than 99.8%) fail to open. To ensure useful behav-
ior the fuzzer loops creating events until a valid one
is generated.

• Close a Random Event
Randomly choose an active event and closes it. If
the event had mmap’d any memory, unmap it. Orig-
inally the code randomly chose to not unmap, but
this ended up leaking enough memory to cause
problems without finding any kernel bugs.

• Ioctl a Random Event

Randomly choose an open event and performs an
ioctl() on it. Ioctls by definition are very spe-
cific to the interface being controlled; ioctl fuzzing
is hard to do generically (a limitation of Trinity and
other fuzzers).

perf fuzzer has special knowledge of perf event re-
lated ioctls. It generates one of the following:

– PERF EVENT IOC ENABLE – enable an
event

– PERF EVENT IOC DISABLE – disable an
event

– PERF EVENT IOC REFRESH – restart an
event for a certain number of overflows

– PERF EVENT IOC RESET – reset the event
counts

– PERF EVENT IOC PERIOD – set the over-
flow period

– PERF EVENT IOC SET OUTPUT – redi-
rect event notifications to another fd

– PERF EVENT IOC SET FILTER – attach a
ftrace filter to the event. perf fuzzer does not
do as much with this as it could, as the fil-
ters generally require root and debugfs to be
mounted

– PERF EVENT IOC ID – return the unique
event ID generated by the kernel
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– generate a completely random ioctl (likely in-
valid).

The perf fuzzer also assigns a random argument,
a split between 0, PERF IOC FLAG GROUP (the
only defined flag which in theory causes the ioctl to
affect all events in a group but which was broken for
many kernel versions), or a random value.

• Prctl the Process
Randomly execute the prctl() process control
routine with PR TASK PERF EVENTS ENABLE
or DISABLE which enables or disables all events
in a process.

• Read Random Event
Randomly read from an active event file descrip-
tor. The size is randomly picked to be either the
expected size based on the event creation flag, or a
completely random size.

• Write Random Event
Randomly write to an active event file descriptor.
This is currently unsupported by the perf event in-
terface so likely will never trigger any bugs, but was
included for completeness.

• Access a Random File
Randomly read or write from a perf event related
file in the proc or sys filesystems. For example:

– /proc/sys/kernel/perf event paranoid

– /proc/sys/kernel/perf event max sample rate

– /proc/sys/kernel/perf event mlock kb

– /sys/bus/event source/devices/

Most of these need root access so it is not likely to
trigger bugs unless the fuzzer is run as root.

• Fork the Process
Call fork() in an attempt to find any threading re-
lated bugs. Open file descriptors and signal han-
dlers are inherited by the child, so the potential for
bugs exists. perf fuzzer currently has a simple im-
plementation: it will only fork one child, and only
if none has already been forked. If a child exists,
then it is killed. The child simply sits in a busy loop.
Even this simple behavior causes a lot of bugs, more
complex child behavior may be added in the future.

• Poll an Event
The perf tool uses the poll() system call when
measuring overflow events. When the mmap’d
buffer crosses a specified threshold the poll returns

Iteration 10000
Open attempts: 295364 Successful: 870

EPERM : 15
ENOENT : 784
E2BIG : 33907
EBADF : 5319
EINVAL : 253992
ENOSPC : 15
EOPNOTSUPP : 462

Close attempts: 855 Successful: 855
Read attempts: 907 Successful: 788
Ioctl attempts: 871 Successful: 416
Mmap attempts: 870 Successful: 250
Prctl attempts: 933 Successful: 933
Fork attempts: 425 Successful: 425
Poll attempts: 899 Successful: 15
Trash mmap attempts: 869 Successful: 869
Overflows: 672
SIGIOs due to RT signal queue full: 0

Figure 3: Sample output of one iteration of the fuzzer.

and data can be read. The perf fuzzer picks a ran-
dom number of active events and then polls on
them. Right now a fairly short timeout is used as
not to hold up the fuzzing process.

• Corrupt the mmap Page

Sampled events mmap() a circular ring buffer from
the kernel. This is writable by the user so that
a tail pointer can be adjusted (so the kernel can
avoid over-writing values that have not been read
yet). The perf fuzzer writes random values into the
mmap page to try to trigger bugs.

• Run a Million Instructions

Last in the list is an assembly language routine that
runs for a million instructions without running any
syscalls.

Each time through the event loop the overflow refresh
threshold is randomly updated (this would make more
sense in the refresh signal handler, but that is not possible
as rand() is not signal safe).

Every 10,000 iterations a status message is printed
similar to Figure 3.

4.3.2 Reproducibility

One highly desirable trait of a fuzzer is that it has re-
producible results: given the same random seed the same
exact values are generated by the fuzzer. This can greatly
ease debugging of problems, and is useful for creating re-
gression tests to verify if a particular bug has been fixed.

The perf fuzzer has been carefully written to be as re-
producible as possible, although full determinism is not
always possible when measuring performance events be-
cause outside factors (such as hardware interrupts, ker-
nel interactions, and other system activity) can vary from
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*** perf_fuzzer 0.28 ***

Linux version 3.15.0 -rc1+ x86_64
Processor: Intel 6/60/3

Seeding random number generator with 1397747139
/proc/sys/kernel/perf_event_max_sample_rate

currently: 12500/s
/proc/sys/kernel/perf_event_paranoid currently: 1
Logging perf_event_open () failures: no
Running fsync after every syscall: no
To reproduce , try:

./perf_fuzzer -t OCIRMQWPFpAi -s 50000
-r 1397747139

Pid =22307 , sleeping 1s
==================================================
Fuzzing the following syscalls:

mmap perf_event_open close read write
ioctl fork prctl poll

*NOT* Fuzzing the following syscalls:

Also attempting the following:
busy -instruction -loop

trashing -the -mmap -page
accessing -perf -proc -and -sys -files

*NOT* attempting the following:
signal -handler -on-overflow

Figure 4: Sample header output.

run to run. Event availability can vary between kernel
versions and processor types, further reducing the possi-
bility of deterministic results.

To ease reproducibility, a header is generated which
includes enough information to recreate a fuzzing run.
This makes it easy to include this state into bug reports
and allows more easily recreating test conditions that
cause failures. An example of this header is shown in
Figure 4. The header includes the version of perf fuzzer,
the Linux version and architecture, and the processor
type. Also included is the random number seed, which
allows replicating the random number generation ex-
actly. Some kernel settings are also saved, such as the
/proc/sys/kernel/perf event max sample rate

value controls the maximum event sample rate. If this
value differs from the original run then some events may
fail because they set the sample rate too high. This is a
particularly tricky value, as the kernel will automatically
adjust this downward (outside of user control) if it thinks
interrupts are happening too quickly. Another kernel
value is /proc/sys/kernel/perf event paranoid.
This allows the system administrator to allow access
to some events (such as system-wide events) that are
disabled by default for normal users for security reasons.
If this value differs from the default then some events
that would normally fail will instead open without error.

One last issue with reproducibility is whether failed
system call attempts need to be recorded. In general only
successful calls should affect kernel state, but it is con-
ceivable that an out of range value could cause a problem
before the call fails. This can be a problem with logging,

S 1281331721
O 5 0 0 -1 3 2 48 80000000000000 ef 0 0 2 1

0 0 1 0 0 1 1 1 0 0 0 1 1 0 2 1 0 0 1 0 0 0 0 0
R 5 32
I 5 2148017159 13
C 5
O 5 0 0 -1 ffffffff00000000 1 49 3 0 0 6 0 1 0

0 1 0 0 1 0 1 1 0 1 0 0 2 1 0 1 1 0 0 0 0 0
F 1
F 0
R 5 24

Figure 5: Sample of perf fuzzer log file format.

as the perf fuzzer generates an order of magnitude more
failed calls than successful ones. By default failed calls
are not logged, but they can optionally be enabled for
enhanced debugging.

4.3.3 Isolating and Reporting Bugs

To use the fuzzer, simply compile it, run it, and watch the
system logs for error reports. For best results use a serial
console to a separate machine; in the event of a crash a
machine can lock up before logs and messages can be
written to local disk.

In simple cases a panic will be generated that can be
debugged by the user or sent to the linux-kernel list for
analysis. Often the issue is complicated, and it can take
time to isolate the bug and generate a useful bug report.

To make it easier to reproduce bugs, it is often useful
to have a number of short runs (stopping after 50,000
events or some other small number) rather than one long
fuzzing run. Replaying and finding a bug that happens
after a few seconds is a lot easier than trying to reproduce
one that occurs after a week of runtime. The fuzzer also
has options to limit which particular system calls to fuzz,
allowing one to narrow down the scope of the fuzzing.

4.3.4 Logging and Replay

perf fuzzer has a logging mode that can be enabled. An
ASCII text file is generated: for each action a letter indi-
cating the action type is printed followed by a list of the
parameters needed to replay the action. Example output
can be seen in Figure 5.

Logs quickly get large and the entire file contents can
be important. Bugs are often not simply caused by the
last perf event open() call, but by a long chain of re-
lated actions scattered throughout the log. Determining
the last action that causes a lockup can be difficult as
crashes can happen quickly enough that key values are
not logged to disk. Even running sync() before log-
ging is not always enough to capture the value (and that
slows the fuzzing process). The behavior of the fuzzer
is usually deterministic enough that multiple runs with
the same random seed usually get to the same place, so
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a special trigger can be inserted in the code to pause just
before the last problem causing action.

Replaying a log and generating the same system call
trace is a fragile process. Iterating through the log file
and generating the system calls therein is often enough
to reproduce bugs, but regenerating exact behavior takes
special care.

An exact replay requires generating file descriptor
numbers that match those from the original run. When
logging is enabled, an extra log file descriptor is created
that would not be there in a non-logging run. To adjust
for this we allocate a dummy log file, even if not logging,
so that the file descriptors match up.

The exact number of open(), close(), mmap(),
and read() system calls can subtly affect replay. The
perf fuzzer does a number of these on setup, to read and
print the system information as well as scan the /sys di-
rectory for event names. To ensure the same total system
call count we make the the replay code run through the
same init code as the actual fuzzer.

The memory addresses returned by system calls
can change, especially for anonymous mmap() calls.
To get consistent memory address locations the ad-
dress space randomization feature of the Linux ker-
nel needs to be disabled (this can be done by setting
/proc/sys/kernel/randomize va space to 0). In
addition any mmap()s done by the fuzzer (usually these
involve ones mapping buffers for console output) must
also be matched in the replay.

When conducting tests involving the fork() system
call, identical thread interleaving is important. If a killed
child thread takes a different amount of time to deallo-
cate its events, an attempted event opening in the parent
thread can fail if a resource limit is hit. To enable de-
terministic fork behavior the fuzzer and the replay code
should both include waitpid() calls to make sure a
child dies completely before continuing.

4.3.5 Tools

We have developed additional tools that can help analyze
the log files:

• replay log takes a log and replays all the events.
Due to the nature of perf events (many are non-
deterministic) this does not always generate the ex-
act same execution, especially with things like sig-
nal handlers.

Once you have a log that causes a bug/crash and
replay log reproduces it, you can isolate the prob-
lem. One way is a binary search (or “bisect” in ker-
nel terms). Currently this is done manually. This
could probably be automated, but the process often

requires manual intervention anyway to reboot after
each crash.

• filter log can filter logs by action type to reduce
the size by eliminating actions not likely to cause
the bug (writes, opens, forks, etc).

• active events analyzes a log and prints the active
events at the time of the end of the log.

• log to code takes a log and converts to a valid C
program that will replay the log. This is useful for
creating small reproducible test cases, and is also
good at turning the long string of values in a line of
the log into something human readable.

5 Results

Table 2 summarizes the major perf event bugs that have
been found (and subsequently fixed) by Trinity and
perf fuzzer from April 2013 through April 2015. Sev-
enteen major bugs have been found, which is more than
those found by more traditional methods over the pre-
vious four years as shown earlier in Table 1. There are
many more outstanding bugs that have been found by the
fuzzers and reported but have not been resolved yet.

5.1 Critical Bugs Found
perf fuzzer triggers a wide variety of bugs; not all of
them are dangerous or security issues. What follows is a
summary of the types of issues we have found thus far.

5.1.1 Crash / Hang / Panic / Denial of Service

The most annoying type of bug found is one that com-
pletely crashes the computer. Tracking down this type of
bug is difficult as logging and debugging information are
often lost.

A related issue is where a bug manages to cause a
process to become stuck and hang one of the processor
cores. In this case often the operating system watchdog
will kick in and give some information on the problem,
or otherwise the Linux “ALT-SYSRQ” stack backtrace
functionality can be used to debug the problem.

Sometimes the error will be one where an invalid
memory access is triggered in the kernel; this will cause
a kernel panic. This type of bug is often easier to iso-
late due to the debug information provided by the panic
message.

These bugs have security implications; at the very least
they are “Denial of Service” (DoS) attacks. Even in cases
where the operating system does not crash outright, of-
ten the system will be left in an unusable or fragile state
that needs rebooting. These bugs can often be triggered
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Table 2: Linux perf event security bugs found by fuzzers starting from April 2013. (T=Trinity, P=perf fuzzer,
H=honggfuzz [24])

Which Type CVE Fixed in Linux Description
T root exploit CVE-2013-2094 3.9 8176cced706b5e5d 32/64 bit cast
P crash - 3.10 9bb5d40cd93c9dd4 mmap accounting hole
P crash - 3.10 26cb63ad11e04047 mmap double free
P panic - 3.11 d9f966357b14e356 ARM array out of bounds
P root exploit CVE-2013-4254 3.11 c95eb3184ea1a3a2 ARM event validation
P panic - 3.11 868f6fea8fa63f09 ARM64 array out of bounds
P panic - 3.11 ee7538a008a45050 ARM64 event validation
P panic - 3.13 6e22f8f2e8d81dca alpha array out-of-bounds

P/T crash CVE-2013-2930 3.13 12ae030d54ef2507 perf/ftrace wrong permissions check
P crash - 3.14 0ac09f9f8cd1fb02 pagefault ftrace cr2 corruption
P crash - 3.15 46ce0fe97a6be753 race when removing event
P crash - 3.15 ffb4ef21ac4308c2 function cannot handle NULL return
P reboot - 3.17 3577af70a2ce4853 race in perf remove from context()
P crash - 3.19 98b008dff8452653 misplaced parenthesis in rapl scale()
P crash - 3.19 c3c87e770458aa00 fix the grouping condition
P crash - 3.19 a83fe28e2e453924 Fix put event() ctx lock
P crash - 3.19 af91568e762d0493 IVB-EP uncore assign events
P crash - 4.0 d525211f9d1be8b5 Fix perf callchain() hang
H memleak - 4.0 a83fe28e2e453924 fix put event() ctx leak
P crash - 4.1 8fff105e13041e49 arm64/arm reject groups spanning PMUs
P crash - 4.1 15c1247953e8a452 snb uncore imc event start crash
P crash - 4.2 57ffc5ca679f499f Fix AUX buffer refcounting

Table 3: Linux perf event WARNING and BUG assertions found by fuzzers (T=Trinity, P=perf fuzzer, Z=trinity run
by 0-day tester)

Which Type Fixed in Linux Description
P WARNING 3.11 734df5ab549ca44f WARNING: at kernel/events/core.c:2122
P WARNING 3.14 26e61e8939b1fe87 WARNING at arch/x86/kernel/cpu/perf event.c:1076

T,Z BUG 3.17-next caught early BUG: unable to handle kernel NULL pointer
P WARNING 3.19 9fc81d87420d0d3f WARNING: Can’t find any breakpoint slot
P BUG 3.19 af91568e762d0493 BUG: uncore assign events()
T WARNING 4.0 2fde4f94e0a95312 WARNING: add event to ctx()
P WARNING 4.1 2cf30dc180cea808 WARNING: trace events filter.c replace preds
P WARNING 4.2 b4875bbe7e68f139 WARNING: trace events filter.c replace preds
P WARNING 4.2 93472aff802fd7b6 WARNING: Fix active events imbalance

Table 4: Linux perf event correctness bugs found while looking at fuzzer traces. (T=Trinity, P=perf fuzzer)
Which Type Fixed in Linux Description

P Aliasing 3.13 0022cedd4a7d8a87 ftrace config value 64-bit but only lower 32 checked
P Correctness 3.15 0819b2e30ccb93ed sample period unsigned cast to signed
P Correctness 3.16 643fd0b9f5dc40fe flags value 64-bit but only lower 32 checked
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by a regular user to make the system unavailable. De-
spite this, reports of this nature are treated with fairly
low urgency by the perf event developers unless a small
triggering case can be created.

5.1.2 Hang Example

An example of this type of bug is the “perf/ftrace wrong
permissions check” bug fixed in the 3.13 kernel. The
ftrace infrastructure allows creating perf event events
that trigger at various predefined code locations in the
kernel. The fuzzer created an event that caused an over-
flow on every function entry; if set up to overflow, then
the overflow handler will trigger this event, which can re-
cursively cause another overflow which triggers another
event, etc., causing the kernel to get trapped in an end-
less loop. The machine will become unresponsive at this
point, although the watchdog might eventually kick in
and display a “kernel is stuck” message.

Once reported this bug was not really fixed; instead
the perf event permissions were changed so that non-root
users cannot create kernel function trace events. This was
the original intention of the code, but due to the (some-
what confusing) nature of the internal perf event permis-
sions checks a comparison was coded wrong.

5.1.3 Local Root Exploit

Sometimes a bug that only looks like a crash or panic
can turn out to have far greater security implications. If a
bug lets user-supplied values get written into unexpected
parts of kernel memory, eventually a clever user will be
able to figure out how to use this to escalate their privi-
leges and obtain root access.

The perf event vulnerability that prompted the de-
sign of perf fuzzer was such an exploit. An improperly
checked config value for a software event allowed a user
to arbitrarily increment any memory location. It was pos-
sible to use this to redirect the undefined instruction in-
terrupt vector to point to user-supplied code, which then
can carry out the privilege escalation (Edge [7] describes
this in more detail).

A different bug found by perf fuzzer is the “ARM
event validity” bug. The ARM validate event()

function called armpmu->get event idx() on the
group leader for an event. However if the group leader
was not an armpmu type, then the function pointer called
was just whatever arbitrary value happened to be at the
memory offset past the end of the structure. If you were
unlucky, this arbitrary value was a valid user address,
and for a short window of time in the 3.11-rc cycle this
value pointed to a value initialized to INT MIN which
is a valid user mappable address of 0x80000000. If a
user mapped exploit code there, the kernel could esca-

late privileges, and we created demonstration code that
did just this. Luckily this bug was found and fixed be-
fore it made it into a released kernel.

5.1.4 Warnings

Throughout the Linux kernel code are “warnings”: de-
bug macros of the type WARN ON used as asserts to
catch corner cases the author of the code thinks are in-
valid but unlikely.

Fuzzers often trigger these messages. Sometimes the
problem reported is real and can be fixed, sometimes it
is a false positive and just silenced. It is still important to
report these although such problems rarely cause crashes.
A list of warnings triggered by perf fuzzer can be seen in
Table 3.

5.2 Other Bugs Found

There are perf event bugs in the kernel that are not obvi-
ously security bugs, but just problems with the interface.
Fuzzers are not designed to catch these bugs but some-
times they are noticed while tracking down more serious
issues.

Table 4 shows bugs found where a 64-bit value was be-
ing range-checked with a 32-bit value. This is a common
error when using preprocessor defined constants on 64-
bit machines. The perf fuzzer does not detect this type
of bug; these are noticed manually in the log files when
debugging other problems.

One example came up when debugging an ftrace prob-
lem. The fuzzer found a real bug, but the reproducible
test case was odd. Only 32-bit config values were sup-
posed to be supported by the interface, but the bug was
triggering on an event that had 0x7fffffff as the top 32-
bits of the 64-bit value. The ftrace code had a bug where
the value was being copied to a 32-bit value (which was
truncated) to be checked for validity. This caused event
aliasing where the top 32-bits were ignored. This was
a correctness bug and was subsequently fixed, but was
found only as a side effect of the actual fuzzing process.

5.3 Bugs Avoided

Now that the perf fuzzer tool has become known in the
kernel development community, it has started being used
to catch bugs in patches before they are applied to the
kernel tree. For example, the ARM perf event devel-
opers encourage usage of perf fuzzer during new patch
submission [4].
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6 Future Work

While the perf fuzzer has already proved itself useful by
finding a number of bugs in the Linux kernel, there are a
number of future plans to improve the fuzzer in particular
and the Linux kernel in general.

6.1 Improved Heuristics and Features
The subset of perf event functionality explored by
perf fuzzer was based heavily on the areas exercised by
the PAPI performance library. So many bugs were found
with this first implementation that the addition of new
features was stalled until the large backlog of existing
problems were addressed. Recently most of the low-
hanging bugs have been fixed, so we propose some new
changes to improve code coverage:

• Testing more exotic ways of generating file descrip-
tors, such as opened events being passed across an
opened socket,

• Setting up breakpoints inside of perf event data
structures,

• Testing the perf event cgroup (container) support.
The perf event interface supports special cgroup
events, but the perf fuzzer does not explicitly test
this,

• More advanced coverage of multithreaded code.
The current fork() fuzzing code is simplistic and
does not test multiple children or errors caused by
exec() of a new process

• More intelligent raw hardware event choices. Cur-
rently the fuzzer picks raw hardware events com-
pletely at random. There are libraries that provide
valid raw event values, such as libpfm4 [8], that can
be used to create more likely to be valid CPU events.

• Fuzzing the Berkeley Packet Filter (BFP) interface
which can be used to enhance event collection

6.2 More Architectures
Another planned fuzzer improvement is widening the test
coverage. Most of the fuzzing has been done on three
systems: an ARM Cortex-A9 pandaboard, a recent Intel
Haswell desktop, and an older Intel Core2 system. These
systems alone have found many bugs, but it would be
good to test other architectures, especially non-Intel sys-
tems, and server systems that have more advanced per-
formance units with features such as Uncore, Offcore,
and energy events. The fuzzer can also be used to test
emulated systems (such as qemu) or the interfaces inside
of virtual machines.

6.3 Code Coverage Awareness
When the fuzzer generates a new test case, it is currently
unknown whether this exercises a new path through the
kernel or is just a rehash of an already-tested path. Some
fuzzers (such as American Fuzzy Lop [30]) are capably
of using instrumentation to determine when new paths
are being explored. This is difficult to do with kernel
code without invoking massive slowdowns, but it might
be possible to exploit the Branch Trace Store functional-
ity available on recent Intel processors to allow this kind
of analysis.

6.4 Improved Determinism
One large impediment to finding bugs is the continued
lack of full determinism in the results, especially cross-
platform. The problem is that event generation repeats
until a valid event is chosen. The list of valid events (es-
pecially hardware events) is tightly bound to the underly-
ing CPU architecture, and (to a more limited extent) the
version of the operating system kernel running. There-
fore often buggy traces are only reproducible on iden-
tical machines with similar kernel versions. Changing
this would require some major changes to the underly-
ing perf fuzzer architecture and it might not be possible
to fully remove the determinism issues, even though this
would greatly ease reproducing bugs.

6.5 Enhancing Trinity (and other fuzzers)
Many of the techniques used with perf fuzzer would be
applicable to testing other system calls on Linux. These
can be generalized and merged back into Trinity and
other fuzzers to allow better coverage without having to
resort to special-purpose niche fuzzers.

6.6 Continued Fuzzing
Despite two years of finding and fixing bugs found by
perf fuzzer, it still is not possible to run it for more than
a few days without some sort of lockup or warning. Most
low-hanging bugs have been found; the remaining ones
can take days to weeks to properly isolate. The most
pressing future goal is finding ways to speed up and au-
tomate the bug isolation process.

6.7 Improved Kernel Interface
The complex nature of the perf event open() system
call makes it a prime candidate for fuzzing. It is a large
codebase, not easily audited, and with many parameters
that interact in complex ways. One might wonder if is
possible to design a performance counter interface that
would be less open for these types of bugs.
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The perfmon2 [8] interface was the leading candidate
for an official Linux counter interface before perf event
was merged. In contrast to perf event, it does many tasks
(such as event scheduling and event name mapping) in
userspace instead of the kernel. This reduces the size
and attack surface of in-kernel code. The interface has
a much smaller number of syscall parameters, but does
involve a much larger number of system calls (twelve).
In this case it is unclear if the interface would be more
resistant to fuzzing or not.

Simpler interfaces exist, such as perfctr [22] (which
does most of its access via ioctl() and rdpmc()) and
the similar LiMiT [5] (which does most of its access via
a simple lprof config() system call and rdpmc()).
Again as much as possible is done in userspace and the
actual kernel interface is limited to a simple interface to
configure hardware counters and fast reads of event val-
ues by special rdpmc (read performance counter) CPU
instructions. This type of interface would seem at a first
glance to be easier to analyze (although ioctl() inter-
faces are unstructured and thus hard to fuzz by general
tools). The big drawback of these interfaces is the lack
of features. The main benefit of perf event is the inte-
gration of all sources of performance information, not
just hardware performance counters, in one place. These
simpler interfaces do not allow access to the full range of
performance data available on a modern CPU.

Other proposals, such as LIKWID [26] bypass the ker-
nel entirely and depend on having raw access to the un-
derlying CPU registers. This has security issues of its
own and is not recommended for systems with hostile
users.

Designing a kernel performance interface is a complex
series of tradeoffs, and it is unclear where the best mix
of features, complexity, and security lies. For Linux the
path chosen was perf event, and for ABI stability rea-
sons this is unlikely to change. A major overhaul of the
interface is unlikely, at best if enough security issues are
found the most likely outcome is having the interface re-
stricted to super-user access only.

7 Conclusion

The perf fuzzer tool implements targeted, system-call
specific, fuzzing and has found seventeen critical bugs
in the Linux kernel. These bugs found are over and
above any bugs found by more generic fuzzers, show-
ing that targeted domain knowledge can find bugs that
more generic fuzzers miss. Even though fuzzing is a
well-known mature bug-finding technology, we find that
there is much room for improvement in current fuzzers.

Kernel interfaces are not always designed with se-
curity in mind. For complex interfaces like Linux
perf event fuzzers are one of our best tools for ensuring

operating system integrity. Operating system security is
a difficult and thankless task but automated tools such as
fuzzers that can find bugs are a valuable tool in a security
researcher’s arsenal.

8 Availability

The perf fuzzer tool is free software and is available from
our website.
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